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reactive halides are not. Especially aldehydes react with 
ETSA-TBAF as smoothly as ketones to afford /3-trimeth-
ylsiloxy ester adducts:15 for example, fran^-2-hexenal, 
benzaldehyde, and /3-phenylpropionaldehyde reacted with 
ETSA at —30° in the presence of a catalytic amount of 
TBAF to give the corresponding adducts in 82, 76, and 24% 
yields, respectively. Namely, when this silylation procedure 
is applied to aldehydes, it offers us a simple and selective 
way of introducing carboalkoxymethyl groups which dis­
criminate between aldehydes and ketones. The following ex­
ample illustrates this selectivity. 
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Isolation, Structure, and Biosynthesis of 
6-Ketoprostaglandin Fi a in the Rat Stomach 

Sir: 

During our studies of the mechanism of biosynthesis of 
6(9)-oxy-ll,15-dihydroxyprosta-7,13-dienoic acid (1), 
which was isolated and characterized by us several years 
ago,1-3 we discovered the presence of another compound 
(2). This communication deals with evidence supporting its 
proposed structure i.e., 6-keto-PGF la, evidence arising from 
biosynthetic studies using as substrates undeuterated as 
well as 5,6,8,9,11,12,14,15-octatritio-(and octadeuterio)-
arachidonic acid and 5,6,8,9,1 l,12,14,15-octatritio-(and oc-
tadeuterio)-15-hydroxy- and -15-hydroperoxyprosta-5,13-
dienoate 9,11-cyclic endoperoxide (PGH2 and PGG2, re­
spectively).4-6 

Substrate (100-200 ^g) was incubated (10 min, 37°, O2 

atmosphere with arachidonic acid substrate or 2 min with 
PGG2 and PGH2 substrate) with a homogenate (w/v 1^o) of 
the rat stomach fundus (12 male Wistar rats, 200-250 g) 
prepared in 0.05 M KH 2 PO 4 -NaOH buffer (pH 7.4) con­
taining EDTA (20 mM). Incubations were terminated by 
the addition of water (2 vol) and diethyl ether (10 vol) and 
the mixture was acidified to pH 3 with 0.5 N HCl. The 
ether phase was separated, washed to neutrality with water 
and evaporated under vacuum. The extract was methylated 
with ethereal diazomethane and the resulting methyl ester 
was purified by thin layer chromatography (silica gel G/ 
chloroform:methanol:acetic acid:water 90:9:1:0.65 v/v). 
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The purified TLC zone (R/ 0.45; PGE2 = 0.43) was only 
slightly reactive to sodium borohydride or 0.5 N sodium hy­
droxide in methanol. Both of these reactions convert PGE2 

formed in small amounts during incubation and present in 
this TLC zone to PGF 2 a and PGF2^ and PGB2, respective­
ly. Compound 2, however, reacted with methoxylamine hy­
drochloride (derivative a) and benzylhydroxylamine hydro­
chloride (derivative b) in pyridine and these derivatives 
were analyzed as the trimethylsilyl ether derivatives by 
mass spectrometry.7 Derivative 2a (retention time 25.2 car­
bons; PGE2 = 23.8, 24.3 carbons—3% SE-30 on Gas 
Chrom Q, 260°) showed intense fragment ions at m/e 629 
(M + ) , 614 (M - CH3), 598 (M - OCH3), 558 (M -
C 5 H n ) , 539 (M - (CH3)3SiOH), 508 (M - (OCH3 + 
(CH3)3SiOH)), 468 (M - (CSH,, 4- (CH3)3SiOH)), 449 
(M - (2 X (CHj)3SiOH)), 418 (M - ((2 X 90) + 31)), 
378 (M - (C 5Hn + (2 X (CH3)3SiOH + OCH3)) 217 
((CH3)3 S i + 0 = C H C H = C H O S i ( C H 3 ) 3 ) , 191 ((CH3)3Si-
+ 0 = C H O S i ( C H 3 ) 3 ) , 173 ( (CHs) 3 Si + O=CHC 5 H 1 1 ) , and 
115 (C(l ) -C(5) fragment, base peak).8 The benzylhydrox­
ylamine derivative 2b (retention time 29.5 carbons first iso­
mer; 29.9 carbons second isomer—3% OV-I on Gas Chrom 
Q, 240°) showed fragment ions containing the benzyloxime 
group (first isomer) observed at m/e 690 (M — CH3), 615 
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(M - (CH3)3SiOH), 544 (M - ((CH3)3SiOH + C 5 H n ) ) , 
525 (M - (2 X (CH3)3SiOH)), and 454 (M - (2 X 
(CH3)3SiOH + C5H1O); fragment ions not containing the 
benzyloxime group were observed at m/e 598 (M — 
C7H7O), 508 (M - (C7H7O + (CH3)3SiOH)), 499 (M -
(C 7H 7 + (C( l ) -C(5) fragment))), 418 (M - (C7H7O + (2 
X (CH3)3SiOH))), 413 (M - (C( l ) -C(7) fragment) - (2 
X CH3)) , 352 (M - ( (C(l)-C(7) fragment) + H + 
(CH3)3SiOH))), 217, 191, 173, and 115 (base peak above 
m/e 100). 

The product derived from PGG2 had the same Rf value 
and retention time on gas chromatography. When 
5,6,8,9,11,12,14,15-octadeuterioarachidonic acid or PGG2 
was used as substrate, mass spectrometry of the methoxime 
derivative of the resulting product (3a) showed a retention 
of seven deuterium atoms which were located at positions 
5,8,9,11,12,14,15 after comparison of its mass spectrum 
with that of 2a. The mass spectrum showed the expected 
shifts at m/e 636 (7 D), 621 (7 D), 606 (7 D), 565 (7 D), 
546 (7 D), 545 (6 D), 515 (6 D), 474 (6 D), 455 (6 D), 454 
(5 D), 424 (6 D), 419 (6 D), 384 (6 D), 219 (2 D), 192 (1 
D), 174 (1 D), and 116 (1 D). The location of the deuteri­
um atoms was further confirmed in the mass spectrum of 
the benzylhydroxylamine derivative (3b). Mass spectral 
shifts of this compound (first isomer) were observed at m/e 
697 (7 D), 641 (7 D), 622 (7 D), 621 (6 D), 606 (7 D), 605 
(6 D), 550 (6 D), 531 (6 D), 515 (7 D), 505 (6 D), 460 (6 
D), 419 (6 D), 219 (2 D), 192 (1 D), 174 (1 D), and 116 (1 
D). Similar results were obtained when PGH2 was used as 
substrate. 

Additional structural support was obtained after catalyt­
ic reduction (Pt02 /ethanol) of 2 and 3. Mass spectra of the 
hydrogenated derivative of 2a confirmed the presence of 
one double bond ( M + 631). The hydrogenated derivative of 
3a was similarly shifted by two mass units ( M + 638). The 
presence of the cis-9,11-dihydroxy function was supported 
by the formation of a cyclic w-butyl boronate (NBB) deriv­
ative 4 (retention time 26.6 carbons; PGF2<* MeNBBMe3Si 
= 25.4 carbons—3% SE-30 on Gas Chrom Q, 240°). Its 
mass spectrum showed an intense fragmentation pattern 
characteristic of NBB derivatives of the PGF's9 namely, 
m/e 551 (M + ) , 536 (M - CH3) , 480 (M - C 5 H n ) , and 
378 (M - ((CH3)BSiOCHC5H11)) [97% intensity]. Other 
fragment ions in the spectrum included m/e 520 (M — 
OCH3) , 461 (M - ((CH3J3SiOH)), 449 (M -
C4H9BO2H2) , 430 (M - ((CH3)3SiOH + OCH3)) , 418 
(M - (C4H9BO2H + OCH3)) , 187, 173, and 115 (base 
peak). 

These results demonstrate that arachidonic acid is con­
verted in good yield by rat stomach homogenates into 6-
keto-PGF|a via the prostaglandin endoperoxide mechanism 
(see Scheme I). An interesting feature of this compound, 

Scheme I. Formation of 6-Keto-PGFia and Its Lactol Form 
by the Rat Stomach 

which belongs to the prostaglandin " 1 " series (i.e., PGE1 

and PGFj a) , is its formation from a substrate of the prosta­
glandin " 2 " series (i.e., PGE2 and PGF 2 a) . Since the isolat­
ed product is unreactive to sodium borohydride in metha­
nol, yet reacts with methoxylamine hydrochloride, we pro­

pose that the keto group at position 6 must be in the lactol 
form coupled with the hydroxyl group at position 9. Thus 
the equilibrium between the open and cyclic forms in meth­
anol heavily favors the lactol form. Further work on the ori­
gin of the oxygen atom at position 6 is currently in progress. 
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Regioselective Remote Photocyclization. Examples 
of a Photochemical Macrocyclic Synthesis with 
Sulfide-Containing Phthalimides1'2 

Sir: 

Certain phthalimides (1, n = 1-3) possessing a terminal 
sulfide function in their ./V-alkyl side chain undergo photo­
cyclization to give five- to seven-membered azathiacyclols 
(2, n = 1-3), probably by way of Norrish type II reactions.3 

We have now extended this type of reaction to an easy syn­
thesis of medium- to large-sized ring systems on the basis of 
an unusually regioselective remote photocyclization of the 
sulfide-containing phthalimides. 

A solution of la-d in acetone (10 mM) was irradiated 
with a 400-W high-pressure mercury lamp in a stream of 
argon for 1-2 h. As shown in Table I,4 in most cases mix­
tures of nine-membered (2a-d) and seven-membered ring 
compounds (3a-d) were obtained, with the former as major 
products, after preparative TLC in moderate direct yields. 
In a representative example, the structural assignment for 
2a was based on: (i) the presence of the cyclol moiety5 ((uv 
259 nm, e 5200), amide (ir 1655 cm - 1 ) , hydroxyl (3240 
cm - 1 ) ) and a methylene (instead of methyl in la; NMR 
3.15 ppm, s); (ii) the molecular weight and composition of 
C1 4Hj7NO2S (mass m/e 263; elemental analysis); and fi­
nally (iii) by analogy with previous cyclizations3 of 1 in 
which the number of methylenes in the side chain («) varied 
from 1 to 3. The substrates further examined represent a 
homologous series with side chains varying from n = 6 to 12 
( le-i) .6 In all examples studied, irradiation afforded mainly 
the expected ring system, up to 16-membered (2i), as a re­
sult of C-C bond formation between the imide carbonyl and 
the terminal methylmercapto group.7 In some cases (2d, 3c) 
the dehydrated products, such as 4, were isolated in further 
support of the postulated cyclol structures. Since it might 
be suspected that photodimerization has occurred with only 
the monomer peaks showing in the mass spectra, the molec­
ular weight of, e.g., 2i, was determined by a vapor pressure 
method;8 the value (362) obtained was consistent with that 
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